Логотип
Хижина
Летучего
Мыша
Логин:
Баланс:

TCP/IP

TCP/IP — это совокупность протоколов, которая обеспечивает передачу данных в компьютерных сетях. Он работает на уровне сетевого интерфейса, где происходит упаковка данных в пакеты и их передача по сети.

TCP/IP состоит из двух основных протоколов: TCP (Transmission Control Protocol) и IP (Internet Protocol).

TCP отвечает за установление соединения между устройствами, надёжную передачу данных и контроль потока информации. Он разбивает данные на небольшие пакеты, отправляет их и проверяет, что все пакеты достигли получателя. Если какой-то пакет потерян, TCP автоматически отправляет его заново.

IP отвечает за адресацию и маршрутизацию пакетов данных. Каждый пакет содержит IP-адрес отправителя и получателя, что позволяет маршрутизаторам определять, куда отправить пакет. IP также разбивает данные на пакеты, но не гарантирует их доставку, оставляя это на усмотрение TCP.

Стек протоколов TCP/IP включает в себя четыре уровня:

  • прикладной уровень (Application Layer);
  • транспортный уровень (Transport Layer);
  • межсетевой уровень (Сетевой уровень) (Internet Layer);
  • канальный уровень (Network Access Layer).

Протоколы этих уровней полностью реализуют функциональные возможности модели OSI. На стеке протоколов TCP/IP построено всё взаимодействие пользователей в IP-сетях. Стек является независимым от физической среды передачи данных, благодаря чему, в частности, обеспечивается полностью прозрачное взаимодействие между проводными и беспроводными сетями.

Прикладной (Application Layer) HTTP, RTSP, FTP, DNS
Транспортный (Transport Layer) TCP, UDP, SCTP, DCCP (RIP, протоколы маршрутизации, подобные OSPF, что работают поверх IP, являются частью сетевого уровня)
Сетевой (Межсетевой) (Network Layer) Для TCP/IP это IP (вспомогательные протоколы, вроде ICMP и IGMP, работают поверх IP, но тоже относятся к сетевому уровню; протокол ARP является самостоятельным вспомогательным протоколом, работающим поверх канального уровня)
Уровень сетевого доступа (Канальный) (Link Layer) Ethernet, IEEE 802.11, WLAN, SLIP, Token Ring, ATM и MPLS, физическая среда и принципы кодирования информации, T1, E1

Прикладной уровень

На прикладном уровне (Application layer) работает большинство сетевых приложений.

Эти программы имеют свои собственные протоколы обмена информацией, например, Интернет-браузер для протокола HTTP, ftp-клиент для протокола FTP (передача файлов), почтовая программа для протокола SMTP (электронная почта), SSH (безопасное соединение с удалённой машиной), DNS (преобразование символьных имён в IP-адреса) и многие другие.

В массе своей эти протоколы работают поверх TCP или UDP и привязаны к определённому порту.

Транспортный уровень

Протоколы транспортного уровня (Transport layer) могут решать проблему негарантированной доставки сообщений («дошло ли сообщение до адресата?»), а также гарантировать правильную последовательность прихода данных. В стеке TCP/IP транспортные протоколы определяют, для какого именно приложения предназначены эти данные.

Протоколы автоматической маршрутизации, логически представленные на этом уровне (поскольку работают поверх IP), на самом деле являются частью протоколов сетевого уровня; например OSPF (IP-идентификатор 89).

TCP (IP-идентификатор 6) — «гарантированный» транспортный механизм с предварительным установлением соединения, предоставляющий приложению надёжный поток данных, дающий уверенность в безошибочности получаемых данных, перезапрашивающий данные в случае потери и устраняющий дублирование данных. TCP позволяет регулировать нагрузку на сеть, а также уменьшать время ожидания данных при передаче на большие расстояния. Более того, TCP гарантирует, что полученные данные были отправлены точно в такой же последовательности. В этом его главное отличие от UDP.

UDP (IP-идентификатор 17) протокол передачи датаграмм без установления соединения. Также его называют протоколом «ненадёжной» передачи, в смысле невозможности удостовериться в доставке сообщения адресату, а также возможного перемешивания пакетов. В приложениях, требующих гарантированной передачи данных, используется протокол TCP.

UDP обычно используется в таких приложениях, как потоковое видео и компьютерные игры, где допускается потеря пакетов, а повторный запрос затруднён или не оправдан, либо в приложениях вида запрос-ответ (например, запросы к DNS), где создание соединения занимает больше ресурсов, чем повторная отправка.

И TCP, и UDP используют для определения протокола верхнего уровня число, называемое портом.

Сетевой (межсетевой) уровень

Межсетевой уровень (Network layer) изначально разработан для передачи данных из одной сети в другую. На этом уровне работают маршрутизаторы, которые перенаправляют пакеты в нужную сеть путём расчёта адреса сети по маске сети.

С развитием концепции глобальной сети в уровень были внесены дополнительные возможности по передаче из любой сети в любую сеть, независимо от протоколов нижнего уровня, а также возможность запрашивать данные от удалённой стороны, например в протоколе ICMP (используется для передачи диагностической информации IP-соединения) и IGMP (используется для управления multicast-потоками).

ICMP и IGMP расположены над IP и должны попасть на следующий — транспортный — уровень, но функционально являются протоколами сетевого уровня, и поэтому их невозможно вписать в модель OSI.

Пакеты сетевого протокола IP могут содержать код, указывающий, какой именно протокол следующего уровня нужно использовать, чтобы извлечь данные из пакета. Это число — уникальный IP-номер протокола. ICMP и IGMP имеют номера, соответственно, 1 и 2.

К этому уровню относятся: DVMRP, ICMP, IGMP, MARS, PIM, RIP, RIP2, RSVP.

Канальный уровень

Канальный уровень (англ. Link layer) описывает способ кодирования данных для передачи пакета данных на физическом уровне (то есть специальные последовательности бит, определяющих начало и конец пакета данных, а также обеспечивающие помехоустойчивость). Ethernet, например, в полях заголовка пакета содержит указание того, какой машине или машинам в сети предназначен этот пакет.

Примеры протоколов канального уровня — Ethernet, IEEE 802.11 (WLAN), SLIP, Token Ring, ATM и MPLS.

PPP не совсем вписывается в такое определение, поэтому обычно описывается в виде пары протоколов HDLC/SDLC.

MPLS занимает промежуточное положение между канальным и сетевым уровнем и, строго говоря, его нельзя отнести ни к одному из них.

Канальный уровень иногда разделяют на 2 подуровня — LLC и MAC.

Кроме того, канальный уровень описывает среду передачи данных (будь то коаксиальный кабель, витая пара, оптическое волокно или радиоканал), физические характеристики такой среды и принцип передачи данных (разделение каналов, модуляцию, амплитуду сигналов, частоту сигналов, способ синхронизации передачи, время ожидания ответа и максимальное расстояние).

При проектировании стека протоколов на канальном уровне рассматривают помехоустойчивое кодирование — позволяющие обнаруживать и исправлять ошибки в данных вследствие воздействия шумов и помех на канал связи.